$$\\[1ex]\text{Seien }f_1,f_2,f_3:\mathbb{R}^2\rightarrow\mathbb{R}\text{ definiert durch }\\ \hspace{120pt}f_1(x,y):=x\\ \hspace{120pt}f_2(x,y):=x^2y\\ \\[1ex]\hspace{120pt}f_3(x,y):=x|y|^{\frac{3}{2}}\\ \\[2ex]\text{und }g_i:\mathbb{R}^2\rightarrow\mathbb{R}\text{ gegeben durch}\\ \\[4ex]\hspace{50pt}g_i(x,y):= \begin{cases} \frac{f_i(x,y)}{x^2+y^2}\hspace{10pt}\text{für}(x,y)\neq(0,0)\\ 0\hspace{29pt}\text{für}(x,y)=(0,0) \end{cases}\\ \text{für }i=1,2,3.\text{ Welche der Funktionen }g_i\text{ sind stetig in }(0,0)?$$