Aufgabe:
Bilden sie das Cauchy-Produkt der Reihe \( \sum\limits_{n=1}^{\infty}{n\frac{4n}{5n}} \) ( \( \sum\limits_{n=1}^{\infty}{n\frac{4n}{5n}} \) nur n im Zähler und Nenner hochgestellt. Lässt sich aber nicht richtig darstellen)
Problem/Ansatz:
Meine Lösung für das Cauchy-Produkt ist \( \sum\limits_{n=0}^{\infty}{} \) \( \sum\limits_{k=0}^{\infty}{\frac{5k}{5k}•\frac{4n-k}{5n-k}} \) (Die k bzw. n-k im Nenner und Zähler sind wieder hochgestellt, jedoch lässt es sich nicht richtig anzeigen (so wäre es richtig \( \sum\limits_{k=0}^{\infty}{\frac{5k}{5k}•\frac{4n-k}{5n-k}} \)).
Die Lösung ist entstanden indem ich die Cauchy-Produkt-Formel darauf angewandt habe. Mein Problem ist das ich mir nicht vorstellen kann was da passiert und warum. Daher weiß ich auch nicht ob die Lösung richtig ist.