Seien \(\displaystyle a_1=\frac{x_1}{\sqrt[n]{x_1\cdot...\cdot x_n}},...,a_n=\frac{x_n}{\sqrt[n]{x_1\cdot...\cdot x_n}}\).
\(\displaystyle a_1\cdot...\cdot a_n=\frac{x_1\cdot...\cdot x_n}{\sqrt[n]{x_1\cdot...\cdot x_n}^n}=\frac{x_1\cdot...\cdot x_n}{x_1\cdot...\cdot x_n}=1\)
\(\displaystyle\Longrightarrow\frac{x_1}{\sqrt[n]{x_1\cdot...\cdot x_n}}+...+\frac{x_n}{\sqrt[n]{x_1\cdot...\cdot x_n}}\geq n\)
\(\displaystyle\Longleftrightarrow\frac{x_1+...+x_n}n\geq\sqrt[n]{x_1\cdot...\cdot x_n}\)
Seien nun \(\displaystyle a_1=\frac{\sqrt[n]{x_1\cdot...\cdot x_n}}{x_1},...,a_n=\frac{\sqrt[n]{x_1\cdot...\cdot x_n}}{x_n}\).
\(\displaystyle a_1\cdot...\cdot a_n=\frac{\sqrt[n]{x_1\cdot...\cdot x_n}^n}{x_1\cdot...\cdot x_n}=\frac{x_1\cdot...\cdot x_n}{x_1\cdot...\cdot x_n}=1\)
\(\displaystyle\Longrightarrow\frac{\sqrt[n]{x_1\cdot...\cdot x_n}}{x_1}+...+\frac{\sqrt[n]{x_1\cdot...\cdot x_n}}{x_n}\geq n\)
\(\displaystyle\Longleftrightarrow\frac1{x_1}+...+\frac1{x_n}\geq\frac n{\sqrt[n]{x_1\cdot...\cdot x_n}}\)
\(\displaystyle\Longleftrightarrow\frac{\dfrac1{x_1}+...+\dfrac1{x_n}}n\geq\frac1{\sqrt[n]{x_1\cdot...\cdot x_n}}\)
\(\displaystyle\Longleftrightarrow\frac n{\dfrac1{x_1}+...+\dfrac1{x_n}}\leq\sqrt[n]{x_1\cdot...\cdot x_n}\)
\(\displaystyle\Longrightarrow\frac n{\dfrac1{x_1}+...+\dfrac1{x_n}}\leq\sqrt[n]{x_1\cdot...\cdot x_n}\leq\frac{x_1+...+x_n}n\)