3 / (1/a + 1/b + 1/c) <= (a + b + c) / 3
3 / ((bc + ac + ab)/(abc)) <= (a + b + c) / 3
3 * (abc) / (bc + ac + ab) <= (a + b + c) / 3
9 * (abc) <= (a + b + c) * (bc + ac + ab)
9 * (abc) <= a^2·b + a^2·c + a·b^2 + 3·a·b·c + a·c^2 + b^2·c + b·c^2
9 <= a/b + a/c + b/a + c/a + b/c + c/b + 3
6 <= a/b + b/a + a/c + c/a + b/c + c/b
a/b + b/a ist immer >= 2
6 <= 2 + 2 + 2