"The first substitution of Euler is used when \(a>0\). We substitute \(\sqrt{ax^2+bx+c}=\pm x\sqrt{a}+t\) and solve the resulting expression for \(x\). We have that \(x=\frac{c-t}{\pm 2t\sqrt{a}-b}\) and that \(\text{dx}\) term is expressible rationally in \(t\). In this substitution, either the positive or the negative sign can be chosen"
Beispiel:$$\int_{}^{}\sqrt{3x^2+5x-2} \text{ dx}$$Wir setzen \(\sqrt{3x^2+5x+-2}= x\sqrt{3}+t\)$$x=\frac{-2-t}{-2t\sqrt{3}-5}=\frac{2+t}{2\sqrt{3}t+5}$$ Dann haben wir$$\sqrt{3x^2+5x-2}=\frac{2+t}{2\sqrt{3}t+5}\cdot \sqrt{3}+t$$ Wie bestimme ich jetzt \(\text{dx}\) ?