Aufgabe: Ich habe ein rechtwinkliges Dreieck ABC. Der rechte Winkel ist "unten rechts" am Punkt B. Die Seite AB ist 2a lang. Die Seite BC ist p lang. Jetzt zieht man eine Senkrechte von der halben Strecke von AB nach oben bis diese die Strecke AC schneidet. Am Schnittpunkt zieht man wieder eine Senkrechte (diese verläuft also parallel zu AB) zur ursprünglichen Senkrechten. Diese Parallele zu AB schneidet BC an einem Punkt Sp.
Problem/Ansatz:Wie beweise ich, dass dieser Schnittpunkt Sp die Seite a halbiert ohne dafür einen geschlossenen Vektorzug o.ä. in Betracht ziehen zu müssen? Kann man das irgendwie ohne Vektoren beweisen?