f(x) = 3·e^{3·x}·4·e^{- 4·x}/(6·x^{-2·x})
f(x) = 3·4/6·e^{3·x - 4·x}/(x^{-2·x})
f(x) = 2·e^{-x}/(x^{-2·x})
f(x) = 2·e^{-x}·x^{2·x}
Jetzt dürfte ein Ableiten mit der Produktregel recht einfach sein.
f'(x) = e^{-x}·x^{2·x}·(4·LN(x) + 2)
Eventuell soll im nenner auch eine e-Funktion sein. Dann wird's noch einfacher.