Aufgabe:
$$ \begin{array}{c}{\text { Zeigen Sie: }} \\ {\text { sind } \mathbf{A}_{1} \text { und } \mathbf{A}_{2} \text { invertierbare }(n, n) \text { -Matrizen, so ist auch } \mathbf{A}_{1} \cdot \mathbf{A}_{2} \text { invertierbar und es gilt: }} \\ {\left(\mathbf{A}_{1} \cdot \mathbf{A}_{2}\right)^{-1}=\mathbf{A}_{2}^{-1} \cdot \mathbf{A}_{1}^{-1}}\end{array} $$
Problem/Ansatz:
Kann mir wer eine Beweis zu der Aufgabe zeigen ?