7 * 3^(x+2) = 2 * 9^(2x-3)
7 * 3^x * 3^2 = 2* 9^(2x) * 9^(-3)
63 * 3^x = \( \frac{2}{729} \) * (3^2)^2x
63 * 3^x = \( \frac{2}{729} \) * (3^x)^4
Substituiere t = 3^x
63t = \( \frac{2}{729} \) * t^4
t(45927 - 2t^3) = 0
t_1 = 0
45927 - 2t^3 = 0
t_2 = \( \frac{9 * \sqrt[3]{252}}{2} \)
Rücksubstituieren:
3^x = 0 => keine Lösung
und
3^x = \( \frac{9 * \sqrt[3]{252}}{2} \)
log3(3x) = log3(\( \frac{9 * \sqrt[3]{252}}{2} \))
vereinfache mit loga(a^x) = x
x = log3(\( \frac{9 * \sqrt[3]{252}}{2} \)) ≈ 3.047