0 Daumen
289 Aufrufe

Aufgabe:

Ermitteln Sie eine Parametergleichung und die Hessesche Normalform der Ebene, in der die Punkte (1,2-2), (1,-2,-1) und (2, -2,1) liegen

Problem/Ansatz:

Ich brauche wieder Eure Hilfe, was ist der eigentliche Unterschied zwischen einer Parameterform und einer Koordinatenform? Vielen Dank und Grüße

Avatar von

1 Antwort

0 Daumen

Hallo

 Koordinatenform  Skalarproduktn*x=d, n der Normalenvektor auf der Ebene, x der Ortsvektor ,  also ax1+bx2+cx3=d , Vektorprodukt  P1P2 x P1P3 gibt Vektor (a,b,c) d durch Einsetzen eines Punktes. oder die 3 Punkte in die Gleichung einsetzen, und a,b,c bestimmen.

Parameterdarstellung: Aufpunkt +r*einRichtungsvektor+s*zweiter Richtungsvektor. also  x=P1+r*P1P2+s*P1P3

Gruß lul

Avatar von 108 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community