Du hast das \(z\) vergessen$$\int_M \colorbox{#ffff00}{z} \,\text{d}V = ?$$falls ich mich nicht verrechnet habe:
$$\begin{aligned} \int_M z \, \text{d}(x,y,z) &= \int_0^1 \int_0^{1-z} \int_0^{1-y-z} z \,\text{d}x \,\text{d}y \,\text{d}z \\ &= \int_0^1 \int_0^{1-z} \left . zx \right|_{x=0}^{1-y-z} \,\text{d}y \,\text{d}z \\ &= \int_0^1 \int_0^{1-z} z(1-y-z) \,\text{d}y \,\text{d}z \\ &= \int_0^1 \left. -\frac 12y^2z + yz(1-z) \right|_{y=0}^{1-z} \,\text{d}z \\ &= \int_0^1 \frac 12 z (1-z)^2 \,\text{d}z \\ &= \left. \frac 12 \left( \frac 14 z^4 - \frac 23 z^3 + \frac 12 z^2 \right) \right|_{\, z=0}^{\,1} \\ &= \frac 1{24} \end{aligned}$$