Machen wir mal eine Fallunterscheidung. Für x > 0 und y > -1
y = (1/x) - 1·(x/x) = 1/x - 1
1/x = y + 1
x = 1/(y + 1)
Nun für x < 0 und y < +1
y = (1/x) - 1·(-x/x) = 1/x + 1
1/x = y - 1
x = 1/(y - 1)
Die Funktion ist nicht eindeutig Umkehrbar, da es für den Bereich von -1 < y < 1 zwei Umkehrfunktionen gibt.