Satz:
\begin{array}{l}{\text { Eindeutige Darstellung bzgl. Basen }} \\ {\text { Ist } B \text { eine Basis eines } \mathbb{K} \text { -Vektorraums } V, \text { so lässt sich jedes }} \\ {v \in V \text { auf genau eine Art und Weise in der Form }} \\ {\qquad v=v_{1} \boldsymbol{b}_{1}+\cdots+v_{n} \boldsymbol{b}_{n}} \\ {\text { mit } v_{1}, \ldots, v_{n} \in \mathbb{K} \text { und } \boldsymbol{b}_{1}, \ldots, \boldsymbol{b}_{n} \in B \text { darstellen. }}\end{array}
Problem/Ansatz:
Was ist aber mit, sagen wir:
1. Art und Weise:
\( \begin{pmatrix} 3\\2\\ \end{pmatrix} \) = \( 3* \begin{pmatrix} 1\\0\\ \end{pmatrix} \) + \( 2*\begin{pmatrix} 0\\1\\ \end{pmatrix} \)
Frage(1):
Ist das die einzige Art und Weise wie ich den darstellen kann ?
Wenn ja,
was ist mit der zweiten Variante:
\( \begin{pmatrix} 3\\2\\ \end{pmatrix} \) = \( 2* \begin{pmatrix} 0\\1\\ \end{pmatrix} \) + \( 3*\begin{pmatrix} 1\\0\\ \end{pmatrix} \)
Frage(2):
Oder sagt man, dass beide Varianten Äquivalent sind ?
Frage(3):
Oder wie ist dieser Satz zu interpretieren?