Hallo liebe Matheexperten,
ich komme bei folgender Übungsaufgabe nicht weiter:
im Vektorraum der Polynome mit Grad kleiner gleich 2, \(p\in\mathbb{R}_{\le2}[x]\), seinen die Basen \(B=(1+x,1-x,2x+x^2)\) und \(C=(3x,x^2-1,1)\) gegeben. Bestimmen Sie für ein Polynom \(p(x)=ax^2+bx+c\) den Koordinatenvektor \(\vec v_B\) bezüglich der Basis \(B\), verwenden Sie dann die Basiswechselmatrix, um das Polynom mit dem Koordinatenvektor \(\vec v_C\) bezüglich der Basis C darzustellen.
Den ersten Teil habe ich hingekriegt: \(\vec v_B=\left(\frac{b+c-2a}{2}\;;\;\frac{c-b-2a}{2}\;;\;a\right)\).
Aber wie geht das nun mit der Basiswechselmatrix, könnt ihr mir da vielleicht helfen?