Aloha :)
Gegeben ist die partielle DGL:$$\frac{\partial u}{\partial t}=3\frac{\partial^2 u}{\partial x^2}\quad;\quad u(x,0)=4\sin(6\pi x)$$die mittels eines Separationsansatzes gelöst werden soll. Also wählen wir als Ansatz:$$u(x,t)=u(x,0)\cdot f(t)\quad;\quad f(0)=1$$und bilden die benötigten Ableitungen:
$$\frac{\partial u}{\partial t}=u(x,0)\, f'(t)$$$$\frac{\partial^2 u}{\partial x^2}=u''(x,0)\, f(t)=-144\pi^2\sin(6\pi x)\cdot f(t)=-36\pi^2u(x,0)\,f(t)$$Beide Ableitungen setzen wir in die DGL ein:
$$u(x,0)\, f'(t)=3\left[-36\pi^2u(x,0)\,f(t)\right]=-108\pi^2\,u(x,0)\,f(t)$$$$\Rightarrow\;\;f'(t)=-108\pi^2\,f(t)\;\;\Rightarrow\;\;\frac{f'(t)}{f(t)}=-108\pi^2\;\;\Rightarrow\;\;\ln[f(t)]=-108\pi^2t+c$$$$\;\;\Rightarrow\;\;f(t)=e^{-108\pi^2t+c}\;\;\Rightarrow\;\;f(t)=e^c\cdot e^{-108\pi^2t}$$Wegen der Randbedingung \(f(0)=1\) muss die Integrationskonstante \(c=0\) bzw. \(e^c=1\) sein.
$$u(x,t)=4\,\sin(6\pi x)\cdot e^{-108\pi^2\,t}$$