$$ f(x) = g(x) $$
$$ x^{3} - 2x^{2} - 3x = x^{2} - x - 2 $$
$$ \Longleftrightarrow (x + 1) \cdot (x^{2} - 4x + 2) = 0$$
$$ x + 1 = 0 \quad \Rightarrow x_{1} = -1 $$
$$ x^{2} - 4x + 2 = 0 \quad \Rightarrow x_{2} = 2 - \sqrt{2} \quad \vee \quad x_{3} = 2 + \sqrt{2} $$
Für die Fläche berechnest du die beiden Integrale:
$$ \int_{-1}^{2-\sqrt2}(f(x) - g(x)) dx\quad \text{und} \int_{2-\sqrt{2}}^{2+\sqrt{2}} (g(x) - f(x)) dx $$