Aloha :)
$$\int x\left[e^{-5x}+\cos(2x^2)\right]\,dx=\int \underbrace{x}_{=u}\underbrace{e^{-5x}}_{=v'}\,dx+\int x\cos(2x^2)\,dx$$$$=\underbrace{x}_{=u}\underbrace{\frac{e^{-5x}}{-5}}_{=v}-\int \underbrace{1}_{=u'}\underbrace{\frac{e^{-5x}}{-5}}_{=v}\,dx+\frac{1}{4}\int \underbrace{4x}_{\text{innere}}\underbrace{\cos(2x^2)}_{\text{äußere}}\,dx$$$$=-\frac{x}{5}e^{-5x}+\frac{1}{5}\int e^{-5x}\,dx+\frac{1}{4}\sin(2x^2)$$$$=-\frac{x}{5}e^{-5x}-\frac{1}{25}e^{-5x}+\frac{1}{4}\sin(2x^2)+\text{const.}$$$$=-\frac{5x+1}{25}e^{-5x}+\frac{1}{4}\sin\left(2x^2\right)+\text{const.}$$
$$\int\frac{x\ln x}{(1+x^2)^2}\,dx=\frac{1}{2}\int\underbrace{\ln x}_{=u}\underbrace{\frac{2x}{(1+x^2)^2}}_{=v'}\,dx=\frac{1}{2}\left[\underbrace{\ln x}_{=u}\underbrace{\frac{-1}{1+x^2}}_{=v}-\int\underbrace{\frac{1}{x}}_{=u'}\underbrace{\frac{-1}{1+x^2}}_{=v}\,dx\right]$$$$=\frac{1}{2}\left[-\frac{\ln x}{1+x^2}+\int\frac{1}{x(1+x^2)}\,dx\right]=\frac{1}{2}\left[-\frac{\ln x}{1+x^2}+\int\frac{(1+x^2)-x^2}{x(1+x^2)}\,dx\right]$$$$=\frac{1}{2}\left[-\frac{\ln x}{1+x^2}+\int\left(\frac{1}{x}-\frac{x}{1+x^2}\right)dx\right]=\frac{1}{2}\left[-\frac{\ln x}{1+x^2}+\int\left(\frac{1}{x}-\frac{1}{2}\frac{2x}{1+x^2}\right)dx\right]$$$$=\frac{1}{2}\left[-\frac{\ln x}{1+x^2}+\ln x-\frac{1}{2}\ln(1+x^2)\right]+\text{const.}$$$$=\frac{1}{2}\left[-\frac{\ln x}{1+x^2}+\frac{\ln x+x^2\ln x}{1+x^2}-\frac{1}{2}\ln(1+x^2)\right]+\text{const.}$$$$=\frac{x^2\ln x}{2(1+x^2)}-\frac{1}{4}\ln(1+x^2)+\text{const.}$$