\(t:4x+5y=13, P(\red{2}|\blue{1})\) Tangentensteigung \(m=\orange{-\frac{4}{5}}\)
Ellipse:\(f(x,y)=b^2x^2+a^2y^2-a^2b^2\)
Ableitungen:
\(f_x(x,y)=2b^2x\)
\(f_y(x,y)=2a^2y\)
\(f'(x)=-\frac{f_x(x,y)}{f_y(x,y)} \)
\(f'(x)=-\frac{2b^2x}{2a^2y} =-\frac{b^2x}{a^2y} \)
\(f'(\red{2}) =-\frac{b^2 \cdot \red{2}}{a^2 \cdot \blue{1}} \)
\(f'(\red{2}) =\orange{-\frac{4}{5}} \)
\(-\frac{b^2 \cdot \red{2}}{a^2 \cdot \blue{1}}=\orange{-\frac{4}{5}} \)
\(b^2=\frac{2}{5}a^2=0,4a^2 \)
\(P(\red{2}|\blue{1})\) liegt auf der Ellipse \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\):
\(\frac{4}{a^2}+\frac{1}{b^2}=1\): \(b^2=0,4a^2 \) einsetzen:
\(\frac{4}{a^2}+\frac{1}{0,4a^2}=1\) \(a^2=6,5\) \(b^2=0,4\cdot 6,5=2,6 \)
Ellipse: \(\frac{x^2}{6,5}+\frac{y^2}{2,6}=1\)