Aloha :)
Schreibe die Summanden der Reihe wie folgt um:
$$a_n=\left(\sqrt{n+1}-\sqrt n\right)=\frac{\left(\sqrt{n+1}-\sqrt n\right)\left(\sqrt{n+1}+\sqrt n\right)}{\sqrt{n+1}+\sqrt n}$$$$\phantom{a_n}=\frac{(n+1)-n}{\sqrt{n+1}+\sqrt n}=\frac{1}{\sqrt n\sqrt{1+\frac{1}{n}}+\sqrt n}=\frac{1}{\sqrt n\left(\sqrt{1+\frac{1}{n}}+1\right)}$$
Jetzt kannst du den Konvergenzradius bestimmen:
$$r=\lim\limits_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=\lim\limits_{n\to\infty}\left|\frac{\sqrt {n+1}\left(\sqrt{1+\frac{1}{n+1}}+1\right)}{\sqrt n\left(\sqrt{1+\frac{1}{n}}+1\right)}\right|$$$$\phantom{r}=\lim\limits_{n\to\infty}\left|\sqrt{1+\frac{1}{n}}\cdot\frac{\left(\sqrt{1+\frac{1}{n+1}}+1\right)}{\left(\sqrt{1+\frac{1}{n}}+1\right)}\right|=\left|\sqrt{1+0}\cdot\frac{\sqrt{1+0}+1}{\sqrt{1+0}+1}\right|=1$$