Aloha :)
Die Aussage in der Überschrift ist falsch. Daher kann man sie nicht beweisen. Richtig ist hingegen:$$6|a\quad\Leftrightarrow\quad 2|a\;\;\land\;\;3|a$$Das kann man wie folgt beweisen:
Hinrichtung (\(\Rightarrow\)):
\(6|a\) bedeutet, es gibt ein \(z\in\mathbb{Z}\), sodass \(\frac{a}{6}=z\) gilt. Das heißt:$$z=\frac{a}{6}=\frac{a}{2\cdot3}\quad\Rightarrow\quad\frac{a}{2}=3z\in\mathbb{Z}\;\;\land\;\;\frac{a}{3}=2z\in\mathbb{Z}\quad\Rightarrow\quad 2|a\;\;\land\;\;3|a$$
Rückrichtung (\(\Leftarrow\)):
\(2|a\) bedeutet, es gibt ein \(z_1\in\mathbb{Z}\), sodass \(\frac{a}{2}=z_1\) gilt. \(3|a\) bedeutet, es gibt ein \(z_2\in\mathbb{Z}\), sodass \(\frac{a}{3}=z_2\) gilt. Das bedeutet:$$\frac{a}{6}=\frac{3a-2a}{6}=\frac{3a}{6}-\frac{2a}{6}=\frac{a}{2}-\frac{a}{3}=z_1-z_2\in\mathbb{Z}\quad\Rightarrow\quad 6|a$$