Zunächst gibt es eine Konstante \(0<c<1 \) sodass für alle \(n\in \mathbb{N}_{\geq 1} \) gilt, dass \( \frac{a_{n+1}}{a_n}=b_{n+1}\leq c <1\), da der Grenzwert von \( b_n\) gerade \(b<1 \) ist. Nun kann man per Induktion \(a_{n+1} \leq c^n\cdot a_1 \) zeigen.
Induktionsanfang: Folgt direkt aus der Voraussetzung \( \frac{a_{2}}{a_1}=b_{2} \quad \Rightarrow a_2=b_2\cdot a_1\leq c\cdot a_1\).
Induktionsvoraussetzung: \(\exists \ n\in \mathbb{N}_{\geq 1} \) mit \(a_{n+1} \leq c^n\cdot a_1 \).
Induktionsschritt: Es gilt also auch für n+1, d.h., \(a_{n+2} \leq c^{n+1}\cdot a_1 \).
Es ist \( \frac{a_{n+2}}{a_{n+1}}=b_{n+2}\quad \Rightarrow a_{n+2}=b_{n+2}\cdot a_{n+1} \leq c\cdot a_{n+1}\stackrel{(IV)}{\leq } c^{n+1}\cdot a_1 \). Nach a) ist \((a_n)\) durch 0 nach unten beschränkt, sodass mit dem vorangegangenem Induktionsbeweis \( \lim a_n=0\) folgt.