$$f(x) = 0.5x^3\Rightarrow f'(x)=1.5x^2$$
$$g: 6x + y =0 \Rightarrow g: y=-6x \Rightarrow m_T=\dfrac{1}{6}=f'(x_0) $$
$$ f'(x_0)=1.5x_0^2=\dfrac{1}{6} \Rightarrow x_0=\pm\dfrac{1}{3}$$
$$ t(x)=f'(x_0)\cdot(x-x_0)+f(x_0)$$
Für \(x_0=\dfrac{1}{3}\)
$$ t(x)=\dfrac{1}{6}\cdot(x-\dfrac{1}{3})+0.5\cdot\left(\dfrac{1}{3}\right)^3$$