Bei den folgenden Aufgaben fehlen mir Lösungsansätze und ich habe keine brauchbaren Ideen.
Aufgabe:
Sei V ein K–Vektorraum, A=(v1,...,vn) eine Basis und B=(w1,...,wm) ein Erzeugendensystem von V. Beweisen oder widerlegen Sie die folgenden Aussagen.
1. (v1,w2,...,wm) ist ein Erzeugendensystem von V
2. (v1+w1,...,vn+wn) ist eine Basis von V
3. Es gibt i ∈ ℕ mit 1 ≤ i ≤ n, so dass (v1,...,vi–1,w1,vi+1,...,vn) eine Basis von V ist
4. Es gibt ein i ∈ ℕ mit 1 ≤ i ≤ n, so dass (w1,...,wm–1,v1) ein Erzeugendensystem von V ist
Vermutlich hilft es mir schon, wenn ich dann die erste Aufgabe lösen kann.
Problem/Ansatz:
Richtige Ansätze habe ich, wie gesagt, noch nicht.
Zu 1.
Zunächst war meine Idee, dass 1. stimmt, weil ein Erzeugendensystem aus einer Basis besteht, und es dementsprechend nichts ändern sollte, weil das, was durch dieses v ersetzt wird, entweder v1 ist, ein vielfaches davon, oder es wird durch einen von v1 linear unabhängigen Vektor ersetzt. In den ersten beiden Fällen bleibt die Menge ja fast gleich und die Vektoren bleiben linear abhängig. Im letzen Fall, wenn W1 zu v1 linear unabhängig ist, bin ich mir unsicher, da dann ein Basisvektor w1 ausgetauscht wird durch einen Basisvektor v1 einer anderen Basis. Das dürfte aber eig nichts ausmachen, weil ja vielfache von w1 im Erzeugendensystem vorhanden sein können. Das Problem ist, dass das doch nicht zwingend gilt.
Zu 2.
Hierbei glaube ich das die Aussage falsch ist, da, wenn ich vi und wi addiere ein vielfaches von der Summe aus vk und wk entstehen könnte, da die Elemente des Erzeugendensystems ja ebenfalls aus vielfachen bestehen können. Dabei liegen i und k zwischen 1 und n, wobei i≠k ist.
Auch wenn meine Ideen stimmen sollten, weiß ich auch noch nicht, wie man sie mathematisch korrekt aufschreibt.
Zudem habe ich noch allgemeine Fragen:
Wenn die Basis aus n Elemente besteht und das Erzeugendensystem aus m Elementen, bedeutet das dann, dass ich annehmen kann, dass das Erzeugendensystem aus einem Element mehr besteht, da m nach n im Alphabet kommt, oder wurden einfach nur zwei unterschiedliche Indizes verwendet, unabhängig von der Anzahl der Elemente und es soll nur zeigen dass die zwei Mengen eine unterschiedliche Anzahl an Elementen haben?
Und ich frage mich noch, ob ich bei einem Erzeugendensystem immer davon ausgehen darf, dass es mindestens ein Element mehr als eine Basis hat und nie gleich der Basis ist, da die Basis ja auch nur ein linear unabhängiges Erzeugendensystem ist und das Erzeugendensystem nach Definition nicht zwingend linear unabhängig ist.