Folgende Aufgabe:
Die Menge \( D \subset \mathbb{R}^{3} \) wird gegeben als Schnittmenge von \( \left\{(x, y, z) | x^{2}+y^{2} \leq a^{2}, x \geq 0, y \geq 0, z \geq 0\right\} \) und
\( \left\{(x, y, z) | x^{2}+z^{2} \leq a^{2}, x \geq 0, y \geq 0, z \geq 0\right\} \)
Berechnen Sie das Volumen von \( D,(a>0) \).
Nun steht in den Lösungen:
Wir beschreiben \( D \) durch:
$$ 0 \leq x \leq a, \quad 0 \leq y \leq \sqrt{a^{2}-x^{2}}, \quad 0 \leq z \leq \sqrt{a^{2}-x^{2}} $$
Meine Frage: Woher weiß man, dass \(0 \leq x \leq a \) ?