A: K1(t)=20000*0,84^(t)
B: K2(t)=25000*0,8^(t)
K1(t)=K2(t)
20000=0,84^(t)=25000*0,8^(t)
25000/20000=1,25=0,84^(t)/0,8^(t)=(0,84/0,8)^(t) logarithmiert
ln(1,25)=ln(0,84/0,8)^(t))=t*ln(...) siehe Mathe-Formelbuch Logarithmengesetz log(a^(x))=x*log(a)
t=ln(1,25)/ln(0,84/0,8)=4,57..Jahre
Kannst auch den Logarithmus mit der Basis 10 verwenden
t=log(1,25)/log(0,84/0,8)=4,57..Jahre
Hier Infos per Bild,vergrößern und /oder herunterladen.
Text erkannt:
\( 6 x_{00} \)
\( 1^{2}=^{2} \)
\( \int \limits_{0}^{1} \int \limits_{0}^{\infty} \int \limits_{0}^{\infty} \int \limits_{0}^{\infty}\left(x_{0}^{\infty}\right)_{0}^{0} d_{0}^{0} \int \limits_{0}^{\infty}\left(x_{0}^{0}\right)_{0}^{\infty} \int \limits_{0}^{0} \int \limits_{0}^{0} \int \limits_{0}^{\infty} \int \limits_{0}^{1}\left(x_{0}^{1}\right)_{0}^{1}\left(x_{0}^{0}+y_{0}^{0}+y_{0}^{0} d_{0}^{1} d_{0}^{1} d_{0}^{1} d_{0}^{0} d_{0}^{0} \int \limits_{0}^{1} \int \limits_{0}^{1} \int \limits_{0}^{1} \int \limits_{0}^{1} \int \limits_{0}^{1} \int \limits_{0}^{1} \int \limits_{0}^{1} \int \limits_{0}^{1} \int \limits_{0}^{1} \int \limits_{0}^{1} \int \limits_{0}^{1} \int \limits_{0}^{1} \int \limits_{0}^{1} \int \limits_{0}^{1} \int \limits_{0}^{1} \int \limits_{0}^{1} \int \limits_{0}^{1} \int \limits_{0}^{1 / 2} d_{0}^{1 / 2} d_{0}^{1 / 2} d_{0}^{1 / 2} d_{0}^{1 / 2} d_{0}^{1 / 2} d_{1}^{1 / 2} r_{0}^{1 / 2} d_{1}^{1 / 2} r_{0}^{1 / 2} d_{1}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} r_{0}^{1 / 2} d_{1 / 6}^{1 / 2} r_{0}^{1 / 3} d_{1 / 6}^{1 / 3} r_{0}^{1 / 6}\right. \)
(in Browar) was and
ard \( (1-p / 100 z) \)