0 Daumen
1,1k Aufrufe


Ich hab jetzt keine konkrete Aufgabe oder so aber in einen Skriptum von mir steht, dass wenn ich zb ein Teilverhältnis dieser Form hätte:

$$  \frac{AC}{CB}= 4 $$

dass ich daraus alle anderen möglichen Teilverhältnisse, der aus diesen drei Punkten entstandenen Strecken berechnen könnte.

Also z.B

$$  \frac{AB}{BC}= ? $$ oder $$  \frac{BA}{AC}= ? $$

Vorausgesetzt ist, dass A,B,C drei paarweise verschiedene kollineare Punkte sind


Ich versteh nicht ganz wie ich das angehen würde, wenn ich so eine Aufgabe hätte.

Könnte mir das jemand erklären bzw. vlt anhand von einem Beispiel vorrechnen?

Vielen Dank im voraus!! & lg

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

siehe Mathe-Formelbuch,was du in jedem Buchladen bekommst.

Kapitel,Strahlensatz,Vierte Proprtionale

ober bei Strecken im 3 dimensionalen Raum

Gerade g: x=a+r*m

gegeben: 2 Punkte A(ax/ay/az) und B(bx/by/bz)  Gerade durch diese beiden Punkte

(bx/by/bz)=(ax/ay/az)+r*(mx/my/mz)

x-Richtung: bx=ax+r*mx ergibt mx=(bx-ax)/1=

y-Richtung: by=ay+r*my ergibt my=(by-ay)/1=

z-Richtung: bz=az+r*mz ergibt mz=(bz-az)/1=

eine Punkt C(cx/cy/cz),der nun in der Mitte  zwischen A(...) und B(....) liegt wäre dann

(cx/cy/cz)=(ax/ay/az)+0,5*(mx/my/mz)

Abstand von 2 Punkten im Raum Betrag (d)=Wurzel(x2-x1)²+(y2-y1)²+(z2-z2)²)

Avatar von 6,7 k

vielen Dank für deine Antwort,


Tut mir leid aber ich versteh leider nicht, was mir die vierte Prop. bei diesem Problem bringt. Könntest du mir vielleicht ein Teilverhältnis vorrechnen bei einem gegeben Teilverhältnis also zb AC:CB = x und daraus AB:BC berechnen?


Das wäre wirklich super aber versteh ich auch voll und ganz wenn du dazu nicht bereit bist - Dürfte grad übel auf der Leitung stehen


lg.

zeichne einen Punkt S (Schnittpunkt) von dem 2 Geraden ausgehen nach rechts.

Dann zeichnest du 2 parallele Geraden ein,die diese beiden Geraden schneiden,

In meinem Mathe-Formelbuch sind die einzelnen Seiten wie folgt beschriftet

1) a

2) b

3) c

4) x

Die Seitenverhältnisse sind dann

a/b=c/x

x ist meistens die gesuchte Seite.

x=c*b/a

Wenn gegeben ist a=2 m b=4 m und c=6 m

x=6 m*4 m/2m=24 m²/2m=12 m

Das Problem ist ich suche keine Seitenlänge.

Ich hab auch keine Seitenlängen gegeben.

In meinem Skriptum ist als Information nur gegeben:

A,B,C sind drei paarweise verschiedene kollineare Punkte.

(also liegen sie auf einer geraden)

und das Teilverhältnis AC:CB = x (x ist eine Zahl)

und daraus soll ich alle anderen Teilverhältnisse berechnen können.


In meinen Fall gibt es also keine 4 geraden. Es gibt nur eine Gerade auf der die Punkte A,B,C liegen, so dass die Strecke AB durch einen Punkt C geteilt wird, wobei dieser Punkt C natürlich außerhalb von AB oder innerhalb von AB liegen kann.

Wenn man aber davon ausgeht das AC:CB = 4 ist würde C innerhalb von AB liegen und die Strecke AB so aufteilen, dass die Strecke AC 4 mal so lang ist wie CB.


Ich versteh nur nicht wie ich rein mit diesen Informationen das Teilverhältnis AB:BC kriegen soll. In diesem Fall ist ja B der teilende Punkt. dieser liegt klarerweise außerhalb der zu teilenden Strecke AC (weil wir ja vorher festgestellt haben das C innerhalb von AB liegt wenn man davon ausgeht das AC:CB = 4). Ich hab keine Ahnung wie ich mit diesen Informationen auf einen konkreten Wert kommen soll.


Ich glaub wir haben ein bisschen aneinander vorbei geredet. Die vierte prop. bei gegeben Seitenlängen zu berechnen kann ich natürlich aber ich hab hier eben keine Seitenlängen, sondern nur das Teilverhältnis zweier Strecken.

Mehr kann ich für dich nicht machen.

Bei solchen Aufgaben braucht man immer eine Zeichnung,damit man einen Überblick hat und dann sucht man sich die notwendigen Formeln aus dem Mathe-Formelbuch heraus.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community