Aloha :)
~plot~ x+3 ; -x^2+9 ; x^2-9 ; [[-5|5|-10|10]] ~plot~
Wir bestimmen zunächst die Gesamtfläche \(F_{ges}\), die von den beiden Parabeln eingeschlossen wird. Wegen der Symmetrie der Gleichungen, teilen die Koordinatenachsen die Fläche in 4 gleich große Teile. Wir berechnen den Teil rechts oben und multiplizieren das Ergebnis mit \(4\):$$F_{ges}=4\int\limits_0^3\left(-x^2+9\right)dx=4\left[-\frac{x^3}{3}+9x\right]_0^3=4(-9+27)=72$$Jetze berechnen wir den oberen Teil der Fläche, den die Gerade \(f(x)=x+3\) aus der Gesamtfläche \(F_{ges}\) herausschneidet. Dazu benötigen wir die Differenzfunktion \(d(x)\) und deren Nullstellen als Integrationsgrenzen:$$d(x):=f(x)-g(x)=x+3-(-x^2+9)=x^2+x-6=(x+3)(x-2)$$Wir müssen also die Differenzfunktion in den Grenzen von \(-3\) bis \(2\) integrieren:$$F_{oben}=\left|\int\limits_{-3}^2d(x)\,dx\right|=\left|\int\limits_{-3}^2(x^2+x-6)\,dx\right|=\left|\left[\frac{x^3}{3}+\frac{x^2}{2}-6x\right]_{-3}^2\right|=\frac{125}{6}$$Der untere Teil der Fläche ist daher:$$F_{unten}=F_{ges}-F_{oben}=72-\frac{125}{6}=\frac{432}{6}-\frac{125}{6}=\frac{307}{6}$$Das Verhätnis der beiden Flächen ist daher:$$\frac{F_{unten}}{F_{oben}}=\frac{\frac{307}{6}}{\frac{125}{6}}=\frac{307}{125}=2,456$$Die untere Fläche ist \(2,456\)-mal größer als die obere Fläche.