In ℝ und ℂ sollte dir doch zumindestens eine Nullstelle ins Auge springen. Mache dann eine Polynomdivision und rate weiter Nullstellen oder forme geschickt um (z.B. 3. binomische Formel).
Es gibt einen schönen Satz über rationale Nullstellen von Polynomen mit ganzzahligen Koeffizienten: Ist \( f = a_nx^n + a_{n-1}x^{n-1} + \dotsm + a_1x + a_0 \) ein Polynom mit \( a_i \in \mathbb{Z} \), falls \( r = \frac{p}{q} \) mit \(p,q \in\mathbb{Z}\) teilerfremd eine rationale Nullstelle des Polynoms ist, dann gilt \( q | a_n \) und \( p | a_0 \).
Der Leitkoeffizient deines Polynoms ist \( a_n = 1 \), der Absolutterm \( a_0 = 1 \) also \( q \in \{\pm1 \}\) und \( p \in \{\pm1\} \), d.h. Wenn es eine rationale Nullstellen gibt ist diese 1 oder -1.
Für die endlichen Körper gehe so vor:
Setze zuerst alle Körperelemente einfach mal ein: Bei \(\mathbb{F}_2 \) siehst du dann dass 1 eine Nullstelle ist, also mache eine Polynomdivision durch (X-1) (aber im Polynomring \(\mathbb{F}_2[x] \)!). Dann erhältst du ein Polynom vom Grad 4. Wieder alle Elemente einsetzen, falls du wieder eine Nullstelle findest gehts weiter mit der Polynomdivision. Ansonsten muss der Rest schon ein Produkt von zwei Polynomen vom Grad 2 sein. (Warum? Könnte nicht auch eines Grad 1 und das andere Grad 3 besitzen?) Darüber hinaus dürfen diese Polynome vom Grad 2 keine Nullstellen haben (sonst hätte ihr Produkt ja auch welche). Liste also mal alle Polynome in \(\mathbb{F}_2[x] \) vom Grad =2 auf, das sind 4 Stück, suche alle ohne Nullstellen. Findest du unter diesen 2 Stück s.d. ihr Produkt gerade dem Rest entspricht? Falls nicht bleibt der Rest als Faktor, falls ja ersetze ihn durch das Produkt der beiden Polynome vom Grad 2.
Bei \(\mathbb{F}_3 \) genauso. Hier findest du zwei Nullstellen 1, 2, also mach in \(\mathbb{F}_3[x] \) eine Polynomdivision durch \( (x-1)(x-2)=(x+2)(x+1)=x^2+2 \). Du erhältst ein Polynom vom Grad 3.
Vielleicht noch als Tipp: ein Polynom (über einem Körper) vom Grad 2 oder 3 ist genau dann irreduzibel, falls es keine Nullstellen hat.