Aloha :)$$a_{n+1}=2a_n-a_{n-1}+2\quad;\quad a_0=0\;;\;a_1=6$$
Um eine Idee für die geschlossene Form zu finden, bestimmen wir die ersten Folgenglieder:$$a_0=0=0\cdot(0+5)$$$$a_1=6=1\cdot(1+5)$$$$a_2=14=2\cdot(2+5)$$$$a_3=24=3\cdot(3+5)$$$$a_4=36=4\cdot(4+5)$$$$a_n\stackrel{?}{=}n\cdot(n+5)$$
Wir untermauern unsere Vermutung durch vollständige Induktion. Dass die Formel für \(n=0,1,2,3,4\) gilt, haben wir bereits bei der Auflistung gezeigt. Daher bleibt nur noch der Induktionsschritt:$$a_{n+1}=2a_n-a_{n-1}+2\stackrel{(I.V.)}{=}2n(n+5)-(n-1)(n-1+5)+2$$$$\phantom{a_{n+1}}=2n^2+10n-(n-1)(n+4)+2=2n^2+10n-(n^2+3n-4)+2$$$$\phantom{a_{n+1}}=n^2+7n+6=(n+1)(n+6)\quad\checkmark$$Damit haben wir bewiesen, dass:$$\boxed{a_n=n(n+5)}$$