Aloha :)
Der Erwartungswert \(\mu\) lautet:$$\mu=\int\limits_{893}^{903}0,016x\,dx+\int\limits_{903}^{913}0,032x\,dx+\int\limits_{913}^{923}0,052x\,dx$$$$\phantom{\mu}=0,016\,\left[\frac{x^2}{2}\right]_{893}^{903}+0,032\,\left[\frac{x^2}{2}\right]_{903}^{913}+0,052\,\left[\frac{x^2}{2}\right]_{913}^{923}$$$$\phantom{\mu}=0,008\left(903^2-893^2\right)+0,016\left(913^2-903^2\right)+0,026\left(923^2-913^2\right)$$$$\phantom{\mu}=911,6$$