Aloha :)
Mir ist bei Teil (a) nicht klar, was \(I_3(D)\) sein soll. Wie habt ihr das im Unterricht definiert?
Bei Teil (b) können wir das Integral direkt berechnen. Dazu müssen wir jedoch zunächst die Menge \(D\) etwas anders parametrisieren:$$0\le y\le 1-x^2\quad\Leftrightarrow\quad -1\le x\le 1\;\;;\;\;0\le y\le1-x^2$$$$|x+y+z|\le1\quad\Leftrightarrow\quad-1\le x+y+z\le1\quad\Leftrightarrow\quad-1-x-y\le z\le 1-x-y$$Damit haben wir die Integrationsintervalle$$x\in[0\;;\;1]\quad;\quad y\in[0\;;\;1-x^2]\quad;\quad z\in[-1-x-y\;;\;1-x-y]$$und können das Integral hinschreiben:$$I_b=\int\limits_Dx^2y\,dx\,dy\,dz=\int\limits_{-1}^1dx\int\limits_{0}^{1-x^2}dy\int\limits_{-1-x-y}^{1-x-y}dz\,x^2y$$$$\phantom{I_b}=\int\limits_{-1}^1dx\,x^2\int\limits_{0}^{1-x^2}dy\,y\int\limits_{-1-x-y}^{1-x-y}dz=\int\limits_{-1}^1dx\,x^2\int\limits_{0}^{1-x^2}dy\,y\left[z\right]_{-1-x-y}^{1-x-y}$$$$\phantom{I_b}=\int\limits_{-1}^1dx\,x^2\int\limits_{0}^{1-x^2}dy\,y\left[(1-x-y)-(-1-x-y)\right]$$$$\phantom{I_b}=\int\limits_{-1}^1dx\,x^2\int\limits_{0}^{1-x^2}dy\,2y=\int\limits_{-1}^1dx\,x^2\,\left[y^2\right]_{0}^{1-x^2}=\int\limits_{-1}^1dx\,x^2(1-x^2)^2$$$$\phantom{I_b}=\int\limits_{-1}^1dx\,x^2(1-2x^2+x^4)=2\int\limits_0^1\left(x^2-2x^4+x^6\right)dx=2\left[\frac{x^3}{3}-\frac{2x^5}{5}+\frac{x^7}{7}\right]_0^1$$$$\phantom{I_b}=2\cdot\frac{5\cdot7-2\cdot3\cdot7+3\cdot5}{105}=\frac{16}{105}$$