[1, 1, 0, 0, 1, 0, 0, 0]
[0, 1, x, x^2, 0, 1, 0, 0]
[0, x, x^2, 1, 0, 0, 1, 0]
[1, x^2, 1, x, 0, 0, 0, 1]
IV - I
[1, 1, 0, 0, 1, 0, 0, 0]
[0, 1, x, x^2, 0, 1, 0, 0]
[0, x, x^2, 1, 0, 0, 1, 0]
[0, x^2 - 1, 1, x, -1, 0, 0, 1]
III - x*II, IV - (x^2 - 1)*II
[1, 1, 0, 0, 1, 0, 0, 0]
[0, 1, x, x^2, 0, 1, 0, 0]
[0, 0, - x^3 + x + 1, - x·(x^3 - x - 1), -1, 1 - x^2, 0, 1]
[0, 0, 0, 1 - x^3, 0, -x, 1, 0]
(1-x^3)*II - x^2*IV, (1-x^3)*III + x·(x^3 - x - 1)*IV
[1, 1, 0, 0, 1, 0, 0, 0]
[0, 1 - x^3, x·(1 - x^3), 0, 0, 1, - x^2, 0]
[0, 0, (x^3 - 1)·(x^3 - x - 1), 0, x^3 - 1, 1, x·(x^3 - x - 1), 1 - x^3]
[0, 0, 0, 1 - x^3, 0, -x, 1, 0]
(x^3 - x - 1)*II + x*III
[1, 1, 0, 0, 1, 0, 0, 0]
[0, (1 - x^3)·(x^3 - x - 1), 0, 0, x·(x^3 - 1), x^3 - 1, 0, x·(1 - x^3)]
[0, 0, (x^3 - 1)·(x^3 - x - 1), 0, x^3 - 1, 1, x·(x^3 - x - 1), 1 - x^3]
[0, 0, 0, 1 - x^3, 0, -x, 1, 0]
(1 - x^3)·(x^3 - x - 1)*I - II
[(1 - x^3)·(x^3 - x - 1), 0, 0, 0, - (x^3 - 1)^2, 1 - x^3, 0, x·(x^3 - 1)]
[0, (1 - x^3)·(x^3 - x - 1), 0, 0, x·(x^3 - 1), x^3 - 1, 0, x·(1 - x^3)]
[0, 0, (x^3 - 1)·(x^3 - x - 1), 0, x^3 - 1, 1, x·(x^3 - x - 1), 1 - x^3]
[0, 0, 0, 1 - x^3, 0, -x, 1, 0]
Nun noch normieren
[1, 0, 0, 0, (x^3 - 1)/(x^3 - x - 1), 1/(x^3 - x - 1), 0, - x/(x^3 - x - 1)]
[0, 1, 0, 0, - x/(x^3 - x - 1), - 1/(x^3 - x - 1), 0, x/(x^3 - x - 1)]
[0, 0, 1, 0, 1/(x^3 - x - 1), 1/((x^3 - 1)·(x^3 - x - 1)), x/(x^3 - 1), - 1/(x^3 - x - 1)]
[0, 0, 0, 1, 0, x/(x^3 - 1), 1/(1 - x^3), 0]
Damit haben wir jetzt auf der rechten Seite die Inverse.
https://www.wolframalpha.com/input/?i=%7B%7B1%2C1%2C0%2C0%7D%2C%7B0%2C1%2Cx%2Cx%5E2%7D%2C%7B0%2Cx%2Cx%5E2%2C1%7D%2C%7B1%2Cx%5E2%2C1%2Cx%7D%7D%5E-1