Parameterform der Ebene
E: X = [1, -1, 2] + r·[1, 2, 6] + s·[-2, -1, 0]
Normalenvektor der Ebene
N = [1, 2, 6] ⨯ [-2, -1, 0] = 3·[2, -4, 1]
Koordinatenform der Ebene
E: 2·x - 4·y + z = 8
Parameterform der Geraden
g: X = [2, 1, 2] + t·[-1, -1, -1]
a) Schnittpunkt
[1, -1, 2] + r·[1, 2, 6] + s·[-2, -1, 0] = [2, 1, 2] + t·[-1, -1, -1] → r = -1 ∧ s = 2 ∧ t = 6
S = [2, 1, 2] + 6·[-1, -1, -1] = [-4, -5, -4]
b) Schnittwinkel
α = ARCSIN( [2, -4, 1]·[-1, -1, -1] / (|[2, -4, 1]|·|[-1, -1, -1]|) ) = 7.238°
c) Abstand Z1 zu E
d = |2·(-4) - 4·(1) + (-1) - 8| / √(2^2 + 4^2 + 1^2) = √21 = 4.583
d) Abstand Z2 zu g
d = |([1, 2, -4] - [2, 1, 2]) ⨯ [-1, -1, -1]| / |[-1, -1, -1]| = √26 = 5.099