Hallo Elina,
Bei der ersten Gleichung fällt auf, dass die Exponenten von \(x\) bis auf das Vorzeichen gleich sind. Wende zunächst die Regel an, dass $$x^{-a} = \frac{1}{x^a}$$Also $$ x^{\log_{10}x} + 100x^{-\log_{10}x} - 20 = 0 \\ x^{\log_{10}x} + 100 \frac 1{x^{\log_{10}x}} - 20 = 0$$Die Multiplikation mit \(x^{\log_{10}x}\) macht daraus eine quadratische Gleichung$$\left( x^{\log_{10}x} \right)^2 + 100 - 20\left( {x^{\log_{10}x}} \right) = 0$$Substituiere daher \(z= x^{\log_{10}x}\)$$z^2 - 20 z + 100 = 0 \implies z = 10$$Im nächsten Schritt logarithmiere die Gleichung. Weiter wende ich die Regel an, dass \(\log a^d = d \cdot \log a\)$$\begin{aligned} x^{\log_{10}x} &= 10 \\ \log_{10} \left( x^{\log_{10}x}\right) &= \log_{10} (10) \\ \log_{10}(x) \cdot \log_{10}(x) &= 1 \\ \left( \log_{10}(x) \right)^2 &= 1 \\ \log_{10}(x_{1,2}) &= \pm 1 \\ x_1 &= 10, \quad x_2 = 10^{-1} = \frac 1{10} \end{aligned}$$
b) hier werden zwei Logarithmen zur identischen Basis von einander abgezogen. Dann kann man sie im Logarithmus zu einer Division zusammen fassen$$\begin{aligned} \log_{2}(40x+24) - \log_{2} (7x+1) &= 3 \\ \log_2\left( \frac{40x+24}{7x+1} \right) &= 3 \end{aligned} $$Nun ist es wichtig zu wissen, dass $$\log_b (a) = c \space \Leftrightarrow \space b ^c =a$$diese beiden Ausdrücke sagen dasselbe aus. Hier angewendet:$$2^3 = \frac{40x+24}{7x+1} \implies x = 1$$
c) geht genauso und d) hat Dir Der_Mathecoach schon vorgerechnet.
Falls Du noch Fragen hast, so melde Dich bitte.