Eine dumme Frage, welchen Grenzwert?
$$\lim\limits_{n\to\infty}(n^2+4)/(n^3-4n)=$$$$\lim\limits_{n\to\infty} (1/n+4/n^3)/(1-4/n^2)→0$$
$$\lim\limits_{n\to0} (n^2+4)/(n^3-4n)$$$$\lim\limits_{n>0\to0} (n+4/n)/(n^2-4)→∞$$$$\lim\limits_{n<0\to0} (n+4/n)/(n^2-4)→-∞$$
$$\lim\limits_{n\to+2} (n^2+4)/(n^3-4n)=$$$$\lim\limits_{n\to+2} (n+4/n)/(n^2-4)=$$$$\lim\limits_{n\to+2} (n+4/n)/((n+2)*(n-2))=$$$$\lim\limits_{n\to+2} ((n^2+4)/n(n-2))/(n+2)$$Mit$$m+2=n$$$$\lim\limits_{m\to0} ((m+2)^2+4)/((m+2)m)/(m+4)$$$$\lim\limits_{m\to0} (m^2+4m+8)/((m+2)m)/(m+4)$$$$\lim\limits_{m\to0} (m+4+8/m)/((m+2))/(m+4)$$$$\lim\limits_{m>0\to0} (m+4+8/m)/((m+2))/(m+4)→∞ $$$$\lim\limits_{n>2\to+2} (n^2+4)/(n^3-4n)→∞ $$$$\lim\limits_{m<0\to0} (m+4+8/m)/((m+2))/(m+4)→-∞ $$$$\lim\limits_{n<2\to+2} (n^2+4)/(n^3-4n)→-∞ $$
$$\lim\limits_{n>-2\to-2} (n^2+4)/(n^3-4n) →∞ $$$$\lim\limits_{n<-2\to-2} (n^2+4)/(n^3-4n) $$$$→-∞ $$
$$\lim\limits_{n\to-\infty}(n^2+4)/(n^3-4n)=$$$$\lim\limits_{n\to-\infty} (1/n+4/n^3)/(1-4/n^2)→0$$