Aufgabe:
Wir wuürfeln zweimal mit einem 6-seitigen Wuürfel. Die Zufallsvariablen X1 : Ω → {1,...,6},(a,b) → a und X2 : Ω → {1,...,6},(a,b) → b auf Ω = {1,...,6}^2 geben das Ergebnis des ersten bzw. zweiten Wurfs an.
a) Bestimmen Sie die Wahrscheinlichkeitsverteilungen von X1 + X2
Meine Lösung:
P(X1+X2=0) = 1/4
P(X1+X2=1) = 2/4
P(X1+X2=2) = 1/4
b) Bestimmen Sie E(X1 + X2)
Meine Lösung:
E(X1+X2) = 1/4 * 0 + 2/4 * 1 + 1/4 * 2 = 2/4 + 2/4 = 4/4 = 1
Problem/Ansatz:
Bei meiner Klausur habe ich von 4 möglichen Punkten leider null bekommen. Ich verstehe aber nicht wieso meine Lösung falsch ist. Wie hätte man diese Aufgabe sonst gelöst?
Bei einer älteren Frage auf meinem Profil, habe ich eine Frage zu einer ähnlichen Aufgabe gestellt (Da wurde nach der Wahrscheinlichkeitsverteilung von X1+X2+X3 gefragt) und eine Lösung bekommen, die ich dann auch bei dieser Aufgabe hier angewendet habe und es ist total falsch.