Aufgabe:
Lineare Algebra, Definitionsbereich und Wertebereich Subtruahieren
Problem/Ansatz:
Text erkannt:
Aufgabe 3 Es sei \( f: D \rightarrow W, f(x)=-x^{2}+4 x-3, \) mit einer der folgenden vier Situationen fur \( D \), \( \forall v \)
(i) \( \mathbb{D}=\mathbb{W}=\mathbb{R}, \quad \) (ii) \( \mathbb{D}=[2 ; \infty[, W=\mathbb{R}, \quad \) (iii) \( \mathbb{D}=]-\infty ; 2], W=]-\infty ; 1] \quad \) (iv) \( \mathbb{D}=\mathbb{R}, W=]-\infty ; 1] \)
Bearbeiten Sie anhand des angegebenen Graphen von \( f: \)
1. Bestimmen Sie Bild \( (f) \) für (i)-(iv), und prüfen Sie ob \( f \) surjektiv und/oder injektiv ist.
2. Es sei nun \( \mathbb{D}=\mathrm{W}=\mathbb{R} \). Bestimmen Sie :
a) \( f([0 ; 3]) \)
b) \( f^{-1}(\{-3\}) \)
c) \( f^{-1}([0 ; 1]) \)
ich hätte 2 Fragen zu dieser Aufgabe, speziell gemeint ist hier Nr.3 1.
1.) Die Definitionsbereiche in (i) und (iv) sind gleich, ergeben diese Subtrahiert d.h. 0?
2.) Muss das Bild im Wertebereich liegen?
Vielen Danke schonmal