Aloha :)
$$A(n)=\sum\limits_{i=1}^n\frac{1}{i(i+1)}=\sum\limits_{i=1}^n\left(\frac{1}{i}-\frac{1}{i+1}\right)\stackrel!=\frac{n}{n+1}$$
Verankerung bei \(n=1\):$$A(n)=\sum\limits_{i=1}^1\left(\frac{1}{i}-\frac{1}{i+1}\right)=\frac{1}{1}-\frac{1}{2}=\frac{1}{2}=\frac{n}{n+1}\quad\checkmark$$
Induktionsschritt:$$A(n+1)=\sum\limits_{i=1}^{n+1}\left(\frac{1}{i}-\frac{1}{i+1}\right)=\sum\limits_{i=1}^{n}\left(\frac{1}{i}-\frac{1}{i+1}\right)+\left(\frac{1}{n+1}-\frac{1}{n+2}\right)$$$$\phantom{A(n+1)}\stackrel{\text{I.V.}}{=}\frac{n}{n+1}+\left(\frac{1}{n+1}-\frac{1}{n+2}\right)=1-\frac{1}{n+2}=\frac{n+2-1}{n+2}=\frac{n+1}{n+2}\quad\checkmark$$