Aufgabe:
Zeigen Sie, dass für eine stetige Funktion \(f(x)\) an der Stelle \(x_0\) gilt: $$f(x_0)\pm \varepsilon = f\left(\frac{x_0\pm\varepsilon}{f'(x_0)}\right)$$
Problem/Ansatz:
Dachte erst ich könnte das durch Umformung der rechten Seite zeigen, aber irgendwie kommt am Ende etwas der Art $$f(x_0 \pm\varepsilon) = f(x_0)\pm \varepsilon $$ dabei raus. Keine Ahnung ob das überhaupt ansatzweise richtig ist, gefühlt nämlich nicht.