Aufgabe: Es sei R eine Relation auf Z, die durch
mRn gilt :⇐⇒ (m und n sind gerade) ∨ (m und n sind ungerade)
gegeben ist. Geben Sie die Aquivalenzklassen an, die durch diese ¨ Aquivalenzrelation erzeugt ¨
werden und zeigen Sie, dass Z gleich der Vereinigung dieser Aquivalenzklassen ist.
und
Welche der folgenden Abbildungen sind injektiv, surjektiv oder bijektiv?
Begrunden Sie jeweils Ihre Antwort. ¨
1. f : Z → Z, f(x) = x^3
,
2. f : R → R≥0
, f(x) = x^2
,
3. f : R
≥0 → R
≥0, f(x) = x^2
.
Problem/Ansatz Ich habs jetzt echt lange versucht und leider nicht hinbekommen. Wenn mir heute noch jemand helfen könnte wäre ich euch sehr dankbar!! bei 3.) soll eigentlich alles zusammen stehen.