\(\begin{aligned} m & =\frac{1+q}{1+q-a\left(i,z,p\right)\cdot\left(1-r\right)}\\ & =\left(1+q\right)\cdot\left(1+q-\left(1-r\right)\cdot a\left(i,z,p\right)\right)^{-1} \end{aligned}\)
Jetzt einfach Faktor-, Summen- und Kettenregel anwenden.
\(\begin{aligned} \frac{\partial m}{\partial i} & =-\left(1+q\right)\left(1+q-\left(1-r\right)\cdot a\left(i,z,p\right)\right)^{-2}\cdot\left(\left(1-r\right)\cdot\frac{\partial a\left(i,z,p\right)}{\partial i}\right)\\ & =-\frac{\left(1+q\right)\left(1-r\right)}{\left(1+q-\left(1-r\right)\cdot a\left(i,z,p\right)\right)^{2}}\cdot\frac{\partial a\left(i,z,p\right)}{\partial i} \end{aligned}\)