Für endliche Mengen A und B gilt: Gibt es injektive Funktionen f : A → B und g : B → A, dann ist |A| ≤ |B| und |A| ≥ |B|. Also ist |A| = |B|, die beiden Mengen sind also gleich mächtig und es gibt eine bijektive Funktion von A nach B.
Zeigen Sie, dass dies auch für beliebige Mengen A und B gilt: Gibt es injektive Funktionen f : A → B und g : B → A, dann gibt es auch eine bijektive Funktion h : A → B.