Die Ableitung des Nenners ist: $$\left(\,t^2+4t+5\,\right)'=2t+4$$Genau diese Ableitung steht im Zähler. Immer, wenn du einen Bruch integrieren sollst, bei dem im Zähler die Ableitung des Nenners steht, kannst du die folgende Regel anwenden:$$\int\frac{f'(x)}{f(x)}\,dx=\ln|\,f(x)\,|+\text{const}$$Am Ergebnis kann man nicht mehr viel vereinfachen, zumindest nicht sinnvoll. Du könntest die Betragszeichen noch weglassen, denn:$$t^2+4t+5=(t^2+4t+4)+1=(t+2)^2+1\ge1$$ Das Argument der Logarithmus-Funktion ist also immer \(\ge1\), sodass der entsprechende Logarithmus für jedes \(t\) existiert.