1) \(180 - 100e^{-2,4*(x - 0,5)} + 10 = 0\)
\(190 - 100e^{-2,4*x +1,2 } = 0\)
\(19 - 10*e^{-2,4*x }*e^{1,2} = 0 | *e^{2,4x}\)
\(19*e^{2,4x} - 10*e^{1,2} = 0 \)
\(19*e^{2,4x} = 10*e^{1,2} \)
\(\frac{e^{2,4x}}{e^{1,2} } = \frac{10}{19}\)
\(e^{2,4x-1,2} = \frac{10}{19}\)
\(e^{2,4x-1,2} = e^{ln(\frac{10}{19})}\)
\(2,4x-1,2 = ln(\frac{10}{19})\)
\(2,4x = ln(\frac{10}{19})+1,2\)
\(x = \frac{ln(\frac{10}{19})}{2,4}+0,5\)