$$ \bigg( 1 + \frac{1}{n} \bigg)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = \sum_{k=0}^n \frac{ 1 \cdot \bigg(1 - \frac{1}{n} \bigg) \cdot \bigg(1 - \frac{1}{n} \bigg) \cdots \bigg(1 - \frac{k-1}{n} \bigg) } {k!} $$ für \( n \to \infty \) folgt $$ \lim_{n\to\infty} \bigg( 1 + \frac{1}{n} \bigg)^n = \lim_{n\to\infty} \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = \sum_{k=0}^\infty \frac{1}{k!} \lim_{n\to\infty} \bigg[ 1 \cdot \bigg(1 - \frac{1}{n} \bigg) \cdot \bigg(1 - \frac{1}{n} \bigg) \cdots \bigg(1 - \frac{k-1}{n} \bigg) \bigg] = \\ \sum_{k=0}^\infty \frac{1}{k!} $$