a)
\( \sum \limits_{k=2}^{\infty} \frac{1}{3^{k-1}}= \)\( \sum \limits_{k=1}^{\infty} \frac{1}{3^{k}}= \)\( \frac{1}{2}\)
b)
\( \sum \limits_{k=0}^{\infty} \frac{(-1)^{k}}{2^{k}}= 1+ \sum \limits_{k=1}^{\infty}\frac{(-1)^{k}}{2^{k}}= \)
\(1- \frac{1}{3} =\frac{2}{3}\)
c)
\( \sum \limits_{k=0}^{\infty}\left(\frac{1}{2^{k}}+\frac{(-1)^{k}}{3^{k}}\right) =\)
\( 2+\sum \limits_{k=1}^{\infty}\left(\frac{1}{2^{k}}+\frac{(-1)^{k}}{3^{k}}\right)=\)
\(2+1-\frac{1}{4} =2 \frac{3}{4} \)