Aufgabe:
Folgende Aufgabe bereitet mir Kopfzerbrechen: Grenzwert der Folge
$$a_{n}=(1+\frac{1}{3n})^{2n}$$
Problem/Ansatz:
Ich weiß, dass man solche Folgen auf die Form bringen muss (siehe zweite Formel unten). Habe bereits versucht, mit den Potenzen -n oder 2/3 zu arbeiten, um die Gleichung auf den gleichen Nenner und Potenz von 3n zu bringen, komme aber nicht auf die Lösung. Bitte um Hilfe/Löungsansatz, damit der Knoten im Kopf platzt...Vielen Dank!
$$e^{2/3}$$
$$a_{n}=(1+\frac{x}{n})^{n} = e^x$$