Aloha :)
Von der ersten Geraden benötigen wir den Punkt \((1;0)\) und die Steigung:$$m_1=\frac{y_2-y_1}{x_2-x_1}=\frac{0-1}{1-(-3)}=-\frac{1}{4}$$Von der zweiten Geraden benötigen wir den Punkt \((5;4)\) und die Steigung:$$m_2=\frac{y_2-y_1}{x_2-x_1}=\frac{7-4}{8-5}=1$$
Damit können wir 4 Forderungen an die Funktion \(g(x)\) aufstellen:$$g(1)=0\quad;\quad g'(1)=-\frac{1}{4}\quad;\quad g(5)=4\quad;\quad g'(5)=1$$Setzen wir diese Bedingungen in$$g(x)=ax^3+bx^2+cx+d\quad;\quad g'(x)=3ax^2+2bx+c$$ein, so erhalten wir folgendes Gleichungssystem:
$$\left(\begin{array}{rrrr}1 & 1 & 1 & 1\\3 & 2 & 1 & 0\\125 & 25 & 5 & 1\\75 & 10 & 1 & 0\end{array}\right)\cdot\begin{pmatrix}a\\b\\c\\d\end{pmatrix}=\begin{pmatrix}0\\-1/4\\4\\1\end{pmatrix}$$Seine Lösung lautet:$$a=-\frac{5}{64}\quad;\quad b=\frac{55}{64}\quad;\quad c=-\frac{111}{64}\quad;\quad d=\frac{61}{64}$$und wir erhalten die Funktion:$$g(x)=-\frac{1}{64}\left(5x^3-55x^2+111x-61\right)$$
~plot~ -1/64*(5x^3-55x^2+111x-61)*(x>=1)*(x<=5) ; (-1/4*x+1/4)*(x>=-3)*(x<=1) ; {-3|1} ; {1|0} ; (x-1)*(x>=5)*(x<=8) ; {5|4} ; {8|7} ; [[-4|9|-0,1|8]] ~plot~