Aloha :)
a) Die Determinante soll den Wert \(2\) haben:
$$2=\left|\begin{array}{rrr}2 & -2 & 1\\-4 & x & -1\\5 & -6 & 3\end{array}\right|=\left|\begin{array}{rrr}0 & 0 & 1\\-2 & x-2 & -1\\-1 & 0 & 3\end{array}\right|=x-2\implies x=4$$
b) Der Vektor \((3;-1;1)\) soll im Kern liegen, es muss also gelten:$$\left(\begin{array}{rrr}4 & 3 & x\\-4 & -9 & y\\-2 & 3 & z\end{array}\right)\cdot\begin{pmatrix}3\\-1\\1\end{pmatrix}\stackrel!=\begin{pmatrix}0\\0\\0\end{pmatrix}$$In Vektorschreibweise heißt das:
$$3\begin{pmatrix}4\\-4\\2\end{pmatrix}-\begin{pmatrix}3\\-9\\3\end{pmatrix}+\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix}\quad\implies\quad\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}-9\\3\\-3\end{pmatrix}$$