Zu a) n2+2n+1>n2+2n
(n+1)(n+1)>n(n+2) |:(n+1)
n+1>(n+2)·\( \frac{n}{n+1} \) |:(n+2)
\( \frac{n+1}{n+2} \)>\( \frac{n}{n+1} \)
also: an+1 > an
b) Untere grenze 0, weil \( \lim\limits_{n\to0} \)\( \frac{n}{n+1} \)=0.
Obere Grenze 1, weil \( \lim\limits_{n\to\infty} \)\( \frac{n}{n+1} \)=1.